Unit 8 Lesson 6-9 Study Guide

Unit 8 Vocabulary

Lessons	Term	Definition
1	Electric current	The flow of electrons through a wire
1	Electric Field	the influence throughout a space due to one or more electrically
		charged particles or surfaces
1	Electroscope	an instrument for detecting static electricity
1, 2, 3, 9	Generator	a machine that converts mechanical energy into electrical energy
1, 2, 3, 9	Motor	a machine that converts electrical energy into mechanical energy
2, 3	Resistance	the quality of a substance that hinders the flow of electrons through it
2	Conductor	Any material through which electricity can flow. A copper wire is a good
		conductor of electric charge as it flows through the circuit
2	Insulator	A substance that cannot conduct electricity very well. The rubber casing
		around the speaker wire serves as an insulator for the electrical current.
3	Electric Circuit	a continuous looped conducting pathway around which electricity flows
6	Dipole	an object with two sides that have opposite characteristics
6, 7	Domain	a small region in which adjacent atoms that have magnetic fields line up
		with their magnetic fields oriented in the same direction
6	Magnetic Field	The space around every magnet where the magnetic force can be felt
6	Magnetic Pole	The two ends of a magnet, where the magnetic force is especially
		strong. Bar magnets have two magnetic poles.
7	Electromagnet	A temporary magnet made using electric current, usually running
		around a metal core.

Lesson 6: Magnetism

Bar Magnets

- Bar magnets are magnetized metal
- The two ends of the bar are called magnetic ______
 - The poles are called: the _____ and the _____ poles
 - o Having two poles makes magnets dipolar

Opposites Attract, Likes Repel

- The poles of magnets like electrically charged particles
- North and South poles ______ each other
- North and North OR South and South poles repel each other
- Dipole: an object with two sides that have opposite characteristics

Domains

• Domains: small regions in which ______ atoms that have magnetic fields _____ with their magnetic fields oriented in the same direction

How Are Magnets Made?

- The DOMAINS are lined up!
- Permanent Magnets all their magnetic domains are _____ more in one direction than in others
 Examples: horseshoe, bar magnets
- Temporary Magnets magnetic domains are aligned but do not stay aligned
 - Examples: paper clips, nails, metal "junk"

Magnets Exert Force

- Magnetic Field: the space around every magnet where the magnetic ______ can be felt
 - Magnets do not have to touch an object to exert a force on it
 - Force is STRONGEST near the poles and becomes weaker further away from the poles.

• The Earth acts like a magnet – a giant bar magnet

Lesson 7: Electricity and Magnetism

A Temporary Magnet

are temporary magnets made using electric current, usually running around a metal core.

Parts of an Electromagnet

- LABEL the parts in the diagram
 - Electricity _____:
 - Metallic core:
 - Coiled wire:

The Strength of Electromagnets:

- Current of Electricity: add more batteries AND/OR
 - _____ the voltage of a battery
- Coils of Wire: add more coils of wire around the magnetic core

Measuring Current: Galvanometers

 An instrument called a galvanometer uses a movable permanent magnet to detect the ______ magnetic field around an electric current.

Making Electric Currents

- A moving ______ charge creates a ______ field, ...
 - But, a magnetic field can cause an electric charge to move too.

 As long as the magnet is stationary, nothing happens. However, if the magnet moves, its changing field at the wire affects charged particles—electrons—in the wire. The _____ begin to flow as an electric current.

Lesson 8: Lab: Motoring On!

- see OLS lesson, class connect session, and website

Lesson 9: Motors and Generators

Explore!

- What makes the blades spin on an electric fan?
 - The combined effect of electric currents and magnetic forces turn electrical energy into mechanical energy.
 - REMEMBER: Any time an electric current flows through a wire, the current produces a magnetic field.

An Electric Motor

 Motor - a machine that converts electrical energy into mechanical energy

Electric Generators

• Generator – a machine that converts mechanical energy into electrical energy

Electricity From Motion

• Turbine - a machine for producing continuous power in which a wheel or rotor, typically fitted with vanes, is made to revolve by a fast-moving flow of water, steam, gas, air, or other fluid

