Unit 6 Lessons 7-9 Study Guide

Unit 6 Lesson 7-9 Vocabulary

Lesson	Term	Definition
$\mathbf{8}$	Fulcrum	the pivot point of a simple machine, the lever, where the bar balances or moves up or down
$\mathbf{8}$	Inclined Plane	a flat surface (plane) set at an angle (inclined); a simple machine used to reduce the force needed to lift or lower things by lengthening the distance
$\mathbf{8}$	Input Force	the amount of force applied to a simple machine
$\mathbf{8}$	Lever	a bar balanced on a fulcrum, or pivot point; a simple machine used to help move or lift objects.
$\mathbf{8}$	Machine	a device that changes the force used to do a given amount of work, and the distance over which the force is applied
$\mathbf{8}$	Output Force	the amount of force a simple machine applies to an object
$\mathbf{8}$	Screw	a grooved wheel in a fixed location that keeps a rope or cable in place as it moves through it; a simple machine used to lift objects by changing the direction of the force
$\mathbf{8}$	Simple Machine	an inclined plane wrapped around a post; a simple machine that converts rotational force into linear force
$\mathbf{8}$	any type of the following: lever, pulley, inclined plane, screw, wedge, wheel and axle	
$\mathbf{8}$	Wheelge \& Axle	a two-sided inclined plane used to separate; a simple machine that converts downward input force into sideways output force
$\mathbf{9}$	Compound Machine	two cylinders of different sizes-the larger is the wheel, and the smaller is the axle-connected so that force applied to one causes the other to turn; a simple machine used to reduce the amount of force needed to rotate or move an object
a machine formed from two or more simple machines		

Lesson 7: Using a Lever

**NOTE: refer to Unit 6 Lesson 7 OLS lesson and the Mechanical Advantage video on the Science class website and the class connect session for Using a Lever.

TEACHER NOTE: https://www.youtube.com/watch?v=AiGiNAnWgig\&feature=c4-overview\&list=UUCahwwtTNfK aRSLoy Pbog

Lesson 8: Simple Machines

What is a Machine?

- Remember, WORK is applying a force to move an object over a distance. ... W=Fd (force x distance)
- A machine is a device that changes the \qquad used to do a given amount of work, and the distance over which the force is applied.
- Machines do not \qquad the amount of work that needs to be done; they just $\underline{\text { make the work easier. }}$

Simple Machines

- A simple machine is a machine that makes work easier when a \qquad force is applied.
- Simple machines cannot do work by themselves; \qquad must be applied to the machine.

Input and Output Forces

- Input Force - the amount of \qquad applied a simple machine
- Machines "magnify" the input force resulting in a greater output force
- Output Force - the amount of force a simple
 machine applies to an \qquad
- The work applied to a simple machine is always \qquad to the work the simple machine applies to the object.

Six Simple Machines

1. Lever-a \qquad balanced on a fulcrum, or pivot point; a simple machine used to help move or lift objects

- Levers can change the direction (up/down) or strength of a \qquad
- Fulcrum - the pivot point of a simple machine where the bar balances or moves up or down

- Examples: see-saw, shovel, crowbar, rake, broom, fork, hammer

2. Inclined Plane - a flat surface (plane) set at an angle (inclined); a simple machine used to reduce the force needed to lift or lower things by lengthening the \qquad

- Inclined Planes change the \qquad of a force - The longer the incline the less force is required to move an object upward

- Examples: ramp, sliding board, ladder, steps

3. Screw - an inclined plane wrapped around a post; a simple machine that converts rotational force into linear force

- Screws change the \qquad of the force
- Examples: screw, drill bits, lid on a jar, meat grinder

- Examples: axe, knives, chisels, teeth, door stop

5. Wheel \& Axle - two cylinders of different sizes-the larger is the wheel, and the smaller is the axle-connected so that force applied to one causes the other to turn;

- Wheel \& Axles change \qquad of a force
- Examples: Ferris wheel, electric fan, door knob

6. Pulley - a grooved wheel in a fixed location that keeps a rope or cable in place as it moves through it; a simple machine used to lift objects by changing the direction of the force

- Pulleys change direction or strength of a \qquad
- Examples: rope system on a flag pole, loading cargo onto a ship

Lesson 9: Compound Machines

Simple vs. Compound Machines

- Remember, a SIMPLE machine makes work easier when \qquad force is applied; the work is done with \qquad movement.
- Compound Machines - a machine formed from \qquad simple machines.
- Compound machines make work easier by changing the strength or direction of a force
- Compound machines may involve more than one movement and more than one force
- Examples: bicycles, zippers, can opener, scissors, wheel barrow

Using the SAME Simple Machine

- A zipper is made up of three \qquad
- Zip Up: You slide the metal clasp up.

- Two wedges inside the clasp push the teeth of the zipper closed as it slides up.
- Unzip: One wedge inside the metal clasp splits the teeth of the zipper apart as you slide it down.

Using DIFFERENT Simple Machines

A can opener is made up of \qquad different simple machines

- \qquad - The blade is a wedge that cuts through the metal as the can opener moves.
-

,
a wheel. The wheel turns an axle. The axle turns gears that keep the can opener gripped to the can and help it move. The gears also turn the wedge that cuts the can.

- \qquad - The arms of a can opener's handle act as levers.

When you squeeze them over the lid of a can, a blade attaches to the lid's edge.

- Scissors - use two \qquad and two \qquad
- Wheel barrows - use two simple machines: (1) \qquad and (2) wheel and axle

Bike Parts are Simple Machines

- A bicycle also combines several different types of simple machines to do work.

○ \qquad - The wheels of a bicycle are wheels and axles.

○ \qquad - The pedals are part of a lever. The gearshifts and brake controls on the handlebars are
 levers, too.

- \qquad - The lever with the pedals turns a pulley that holds the bicycle's chain.
- What happens if one of the simple machines is not working in a compound machine, like a bicycle? If one of the simple machines is not working on the bike, the bike won't move or it will not be safe to ride the bike.

Work, Force, \& Distance in Compound Machines

- Work is represented by the equation $W=F d$.
- To complete the same amount of work, you can \qquad the amount of force you need to use by spreading it over a longer distance.
- Or, you can decrease the amount of distance you need to cover by \qquad amount of force you use.
- In COMPOUND MACHINES, for example:
- If you use a pair of scissors, like the top photo, with long blades and a short handle to cut an object. The force of the blades coming together is spread along the blades' length. Therefore, you can make a long cut, but the force of the cut is weak. This tool is good for cutting paper and fabric.
- Now suppose you use a pair of scissors, like the bottom photo, with a short blade and a long handle to cut an object. The force of the blades coming together is spread over a short distance. Therefore, the cut is short, but the force is strong. This type of scissor is good for
 cutting sheet metal and heavy materials.

