Unit 6 Lessons 1 – 5 Study Guide

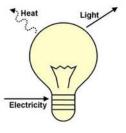
Unit 6 Lesson 1-5 Vocabulary

Lesson		Definition
1	Chemical Energy	A form of potential energy stored in chemical bonds
1	Electrical Energy	The ability or conscioute do work
1	Energy	The ability or capacity to do work
1	Energy Sources	
1	Energy	The conversion of energy from one form to another
	Transformation	
4, 5	Gravitational	
	Potential Energy	
1, 2	Joule	The SI unit that measures energy
3, 4, 5	Kinetic Energy	
1	Law of	A law of physics that says that energy cannot be created or destroyed, but
	Conservation of	it can be transformed
	Energy	
1	Light Energy	
1	Mechanical	The energy of motion and position
	Energy	
1	Nuclear Energy	
4, 5	Potential Energy	Stored energy that is associated with the position of an object
2	Power	
1	Sound Energy	Energy produced when matter vibrates
2	Watt	The SI unit of power (energy per time), equal to one joule per second (1
		(s/L
1, 2	Work	
4	Elastic Potential	Energy stored due to a change in shape in a material that tends to return
	Energy	to its original shape
-	Amplitude	A measure of how far the pendulum is offset from a vertical position when
5		it is released
5	Arm	The arm of the pendulum is the string or bar that attaches the bob to the
		pivot; its length is measured from the pivot to the center of the bob
5	Bob	
-	Period	The time it takes, in seconds, for a pendulum to complete a full swing –
5		moving from one side to the other and back again
5	Pivot	
-		

Lesson 1: Energy

What is Energy?

Energy – the ability to do ______


 Changes in the physical world are possible because of energy: change in speed, change in direction, change in temperature, etc.

Forms of Energy

- Mechanical Energy the energy of motion and position
- Chemical Energy energy stored in chemical bonds
- Electrical Energy associated with electric charges; electrons moving
- Sound Energy caused due to the vibration of objects or matter
- Light Energy a form of electromagnetic energy; vibration of electrically charged particles which sends light energy out into the space around them
- Nuclear Energy when atoms are split during nuclear fission

Conservation of Energy

- Law of Conservation of Energy states that energy can neither be
 - nor destroyed, but can be transformed
 - Energy can be transferred from place to place and can be converted between the different forms of energy
 - When transferred or converted the amount of energy does not change, it is

Energy Transformed

- Energy transformations take place when energy ______ from one form to another
 - Example: Gasoline contains chemical energy.
 - When it is burned, it is ______ into heat energy and mechanical energy.
 - No energy is lost or gained!

Energy Sources

- **Renewable Sources**: can be replaced (in a lifetime);
 - Examples:
- Non-renewable Sources: cannot be replaced (in a lifetime);
 - Examples: coal, oil, natural gas, uranium

Measuring Energy

- Joule is the SI unit for _____; 1 joule (J) = 1 Newton-meter (N-m)
 - o one joule of energy is used when a force of one Newton is applied over a distance of one meter
 - called a Newton-meter or a joule (J)

Lesson 2: Work

What is Work?

Work is when a ______ is exerted on an object and the object moves a distance in the direction of the force

Work Depends on Force and Distance

- W = Fd (Note: the W is in italics)
- Work = Force x distance
 - W (work) = How much work needs to be done to move a book with a force of 10 Newtons a distance of 1 meter?
 - F (Force) = 10 Newtons or 10 N
 - d (distance) = 1 meter or 1 m
 - *W* = 10 N x 1 m
 - W = ____ N-m or ____ joules or ____ J

Work and Time

- Work does not take into account the ______ it takes to complete a task: *W* = Fd
- If you do the work of moving a book using 10 N of force a distance of 1 meter in 2 seconds or 10 seconds or 50 seconds, you will still do 10 joules of work.

Power:

- Power = the rate at which work is done
- P = W/t
- Power = Work/time
 - Power = How much **power** is needed to cut down a tree if using a hand saw or a chain saw?
 - Both a hand saw and a chain saw will do the same amount of work (joules)
 - The chain saw will do the work faster; faster means more power.

The Watt

- P = W/t which means power is work (joules) divided by time (seconds) or joules per second or J/s
- Joules per second (J/s) is the SI unit of ______, also called watts or W (Note: the W is NOT in italics)

Calculating Power

- P = W/t
- Power = Work/time
 - P (power) = How much power is needed to move a book using 10 J in 2 seconds?
 - W (work) = 10 joules or 10 J
 - t (time) = 2 seconds or 2 s
 - P = 10 J / 2 s
 - P = _____ J/s or _____ watts or _____ W

Power and Energy

- Power is the <u>rate at which</u> is done
 - Work requires energy
 - Therefore, power can also be defined as <u>the rate at which</u> is used

Lesson 3: Kinetic Energy

What is Kinetic Energy?

- Kinetic Energy (KE) is the energy an object has while it is in ______
 - o it is the energy that enables moving objects to perform work on other objects;
 - When a moving object stops moving its kinetic energy is ______

Kinetic Energy Depends on Mass

- The amount of kinetic energy (KE) of a moving object depends on its ______
 - Consider throwing a baseball versus a ping pong ball at a pyramid of cans –which one will have a greater impact on the cans? The baseball! (More mass!)

Kinetic Energy Depends on Speed

- The amount of kinetic energy (KE) of a moving object depends on ______
 - Consider you throwing a baseball versus a professional pitcher throwing a baseball at a pyramid of cans –which one will have a greater impact on the cans? Pitcher! More speed!

Comparing Kinetic Energies

- **Two cars of the same mass** Car #1 is moving slowly through town and Car #2 is moving at a high rate of speed on an open highway:
 - Which one has more kinetic energy?
- **Two vehicles moving at the same high rate of speed** on an open highway –Vehicle #1 is a small car and Vehicle #2 is a tractor-trailer:
 - Which one has more kinetic energy? ______

Kinetic Energy Equation

- KE = $\frac{1}{2}$ mv²
- Kinetic Energy = $\frac{1}{2}$ (mass) (speed)² ...NOTE: v = speed, velocity without direction

Calculating Kinetic Energy

- KE = $\frac{1}{2}$ mv²
- Kinetic Energy = $\frac{1}{2}$ (mass) (speed)²
 - KE (Kinetic Energy) = How much kinetic energy is needed to move a book using 10 J in 2 s?
 - o m (mass) = 0.05 kg
 - v (speed) = 2 meters/seconds or 2 m/s
 - KE = $\frac{1}{2} \times 0.05$ kg x (2m/s)²
 - KE = $0.025 \text{kg} \times 4\text{m}^2/\text{s}^2$
 - KE = _____ J ... or _____ joules of kinetic energy

Changes in Kinetic Energy

- Imagine throwing a ball up into the air, when would the kinetic energy –the energy of the ball's motion- be greatest? Right at the beginning and end of its flight
- Imagine throwing a ball up into the air, when would the kinetic energy –the energy of the ball's motion- be the least? At the highest point

Kinetic Energy of a Pendulum

- Imagine a swinging pendulum (or a child on a swing)...
 - When would the pendulum reach its maximum speed?

_____ of swing

When would the pendulum have its greatest kinetic energy?

_____ of swing

• When would the pendulum have no kinetic energy?

_____ of the swing

Lesson 4: Potential Energy

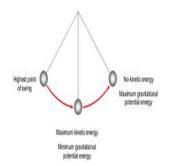
What is Potential Energy?

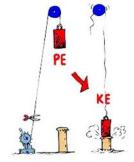
 Potential Energy - ______ energy an object has due to position or shape; when objects are NOT moving

Elastic Potential Energy

- Elastic Potential Energy (EPE) is stored energy in a ______ object that can be bent, stretched or compressed from its natural shape
- Examples: bow and arrow, mousetrap

Gravitational Potential Energy

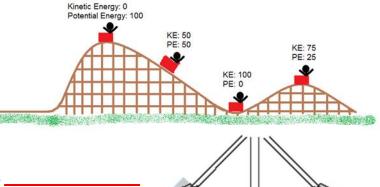

- Gravitational Potential Energy (GPE) is stored energy due to an objects
 - and have the potential to fall due to the force of gravity; a property of elevated objects
- Examples: objects that fall!

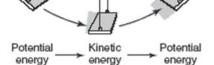

Gravitational Potential Energy Equation

- The amount of GPE an object has depends on the object's weight (N) and height above the floor (m)
- PE = w x h
- Gravitational Potential Energy = weight x height
 - Weight (w) = mg or mass (kg) x acceleration due to gravity (m/s²)
- Therefore, PE = m x g x h
- Gravitational Potential Energy = mass x acceleration due to gravity x height
 - PE (Potential Energy) = How much potential energy is in a ball with a mass of 0.16kg tossed to a height of 4.0 m above the floor?
 - m (mass) = 0.16 kg
 - \circ g (acceleration due to gravity) = 9.8 m/s²
 - h (height) = 4 m
 - PE = m x g x h
 - PE = (0.16kg) (9.8m/s²) (4 m)
 - PE = _____ kg m²/s²
 - PE = _____ J

Converting Potential Energy to Kinetic Energy

- Objects at rest have potential energy due to <u>shape</u> or ______
- A change in shape or position can set the object in ______
- Objects in motion have kinetic energy
- Therefore, potential energy can be _____ into kinetic energy




Changes in Potential and Kinetic Energy

- Changes in potential and kinetic energy can be ______
- Imagine a roller coaster, as it CLIMBS a hill
 - The roller coaster is lifted against the force of gravity; **increasing** its <u>potential energy</u>;
 - The roller coaster also has kinetic energy because it is moving, however the <u>kinetic energy</u> is decreasing as it climbs the hill
- When the roller coaster reaches the top of the hill, it stops moving for a moment
 - Potential Energy is 100 (the max)
 - Kinetic Energy is 0 (the lowest)
- When the roller coaster goes DOWN the hill
 - The Potential Energy ______
 - The Kinetic Energy ______
- The Roller Coaster's potential energy is: elastic or gravitational? gravitational

Potential and Kinetic Energy of a Pendulum

- Kinetic Energy increases as the pendulum swings _ and decreases as it swings upward
 - Kinetic energy is greatest when the pendulum is moving fastest

- Potential Energy increases as the pendulum swings upward and decreases as it swings ______
 - Potential energy is greatest when the pendulum's at the highest point

Conservation of Energy

- When Kinetic Energy increases, Potential Energy decreases
- When Potential Energy increases, Kinetic Energy decreases
- Law of Conservation of Energy states that energy can neither be created nor destroyed, but can be

Lesson 5: LAB: The Pendulum

What is a Pendulum?

Pendulum – object that moves back and forth in a constant amount of _______

Parts of a Pendulum

- Pivot the point where the pendulum is attached to a non-moving ______
- Bob the mass attached to the bottom of the
- Arm the string or bar that attaches the bob to the pivot; the ______ of the arm is measured from the pivot to the center of the bob

Pendulum in Motion

- **Period** the time it takes, in seconds, for a complete, ______ swing of the pendulum moving from one side to the other and back again
- Amplitude a measure of how ______ the pendulum is offset from a vertical position when it's released