Unit 4 Lessons 9 – 13 Study Guide

Unit 4 Lesson 9-13 Vocabulary:

Lesson:	Term	Definition
9	Friction	
9	Inertia	
10	Mass	
10	Weight	
13	Buoyancy	
13	Buoyant Force	

Lesson 9: Newton's First Law of Motion

Motion and Force

- Unbalanced forces cause an object to start or change motion
- Balanced forces cause no change in motion

Newton's First Law of Motion:

- A body at ______ unless acted on by an external, unbalanced force.
- A body ______ unless acted on by an external, unbalanced force.
- Example: An object will keep doing what it is doing (moving or sitting still) unless some other force makes it do something else

Objects at Rest and in Motion:

- Inertia: the quality of an object that resists a change in motion or resists a change in the resting state
 - The more massive an object, the more _____ it has ... the harder it is to change its motion
 - Example: Golf Ball and Bowling Ball
 - Golf Ball: has a smaller mass and less inertia compared to bowling ball
 - Bowling Ball: has a larger mass and more inertia compared to a golf ball

Putting the First Law to Use:

Inertia Forces:

- Example #1: You are sitting on a stopped bus.
 - When the bus starts moving, you feel you are being pushed backward... that's inertia!
- Example #2: You are riding a dirt bike over a hilly road
 - You would fly off the bike if you hit a large bump or rock on the road. That's inertia!

Friction: A force that resists motion between two objects that are in contact

- o If you slide a book across the floor, eventually it stops (it doesn't slide forever!)
 - This is friction at work

Think about this airplane...

- If the airplane is in flight:
 - Thrust force = 10,000 N
 - Drag Force = 10,000 N
 - Is the plane going to speed up, slow down or stay the same? Why?
- If this airplane is in flight:

- Thrust force = 11,000 N
- Drag force = 10,000 N
- Is the plane going to speed up, slow down, or stay the same? Why?
 - .

Lesson 10: Mass and Weight

Mass and Weight

- Mass: the amount of _____ in an object
 - The greater the ______, the more force that is needed to change its velocity
 - Measured in grams (g) or kilograms (kg)
 - THINK! It is easier to throw a golf ball than a bowling ball!
- Weight: a measure of the gravitational force exerted on an object
 - Weight is a ______ so it is measured in Newtons (N)

Mass and Inertia:

- The greater the object's mass, the greater its inertia
 - This means that a more massive object is harder to move from rest, or to change the motion of, than a less massive object

How Do You Measure Mass?

- Balance: works by measuring the object compared to a set of know masses.
- The mass of an object is the same no matter where in the universe it is measured. Why?
 - This is because the amount of matter in an object DOES NOT change by just moving it.

How Do You Determine Weight?

- Scale: uses a ______ scale that stretches a certain amount according to the force of gravity acting on the object
- Weight of objects change depending on the gravity
 - You would weigh LESS on the moon because the moon has LESS gravity compared to Earth.

Weight is a Force ... Mass is NOT a Force

- Weight (w) = Mass (m) x Acceleration due to Gravity (g)
 - w = m x g
 - w = weight (N)
 - o m = mass
 - g = acceleration due to gravity
 - On Earth, g = 9.8 m/s/s
- Example: What is the weight of a 70 kg person on Earth?
 - Weight (w) = Mass (m) x Acceleration due to Gravity (g)
 - \circ w = m x g
 - w = what you are solving for
 - m = 70 kg
 - g = 9.8 m/s/s
 - w = 70 kg x 9.8 m/s/s
 - w = 686 N

Lesson 11: Newton's Second Law of Motion

Newton's Second Law of Motion:

- When an ______ force acts on an object, the object will be accelerated. The acceleration is proportional to the force and will be in the same direction of the force.
- Example: If a force acts on an object, it will be accelerated (it will speed up). It will speed up in the same direction as the force that acted on it

Acceleration Depends on Force and Mass:

- Force \rightarrow
 - o ______ the force of the push/pull on an object increases its acceleration
 - Decreasing the force of the push/pull on an object decreases its acceleration
- Mass →
 - A force push/pull acting on a smaller mass produces a ______
 acceleration
 - o A force push/pull acting on a larger mass produces a smaller acceleration

Force as a Formula

- Force = Mass x Acceleration
- F = m x a
 - \circ F = force (N)
 - o m = mass (kg)
 - a = acceleration (m/s/s)
- Example: You want to push a box of books across your floor. What amount of force must be applied to a box with a mass of 2 kg so that it will accelerate to 3 m/s/s?
 - Force = Mass x Acceleration
 - **F** = m x a
 - F = what you are solving for
 - m = 2 kg
 - a = 3 m/s/s
 - \circ F = 2 kg x 3 m/s/s
 - F = 6 N
 - \circ Force = 6 N

Lesson 12: Newton's Third Law of Motion

Remember!

- A force is a _____ or a _____
- An unbalanced force changes an object's motion
- Objects have ______ and resist forces that try to change their motion
- Friction is the force between two ______ that _____ motion
- Unbalanced forces cause objects to accelerate according to the equation: F = m x a

Newton's Third Law of Motion:

- In one object exerts a force on a second object, the second object exerts a force on the first object that is ______ in magnitude (size) and ______ in direction.
- Example: For every action there is an EQUAL and OPPOSITE reaction!
 - If I push on you, you push on me back!

Acceleration Formula:

- Acceleration = Force ÷ Mass
- a = F ÷ m
 - \circ a = acceleration (m/s/s)
 - \circ F = Force (N)
 - o m = mass (kg)

- **Example:** You are jumping on a trampoline. Your mass is 60 kg. How much will you accelerate when the trampoline applies a force of 90 N?
 - Acceleration = Force ÷ Mass
 - \circ a = F ÷ m
 - a = what you are solving for
 - F = 90 N
 - m = 60 kg
 - \circ a = 90 N ÷ 60 kg
 - a = 1.5 m/s/s
 - Acceleration = 1.5 m/s/s

Lesson 13: Buoyant Forces

Buoyancy: the tendency of an object to float

Buoyant Force: the upward force on an object which is immersed in a fluid

Buoyant Force and Weight:

- In order for an object to float in a fluid, its weight (which is a force) must be LESS than the buoyant force exerted by the fluid.
- **Example:** a rubber ducky and a rock in a swimming pool
 - Rubber Ducky = the weight is LESS than the buoyant force of the water, so the duck floats
 - Rock = the weight is GREATER than the buoyant force of the water, so the rock will sink

Archimedes' Principle:

• When an object is placed in a fluid, the buoyant force acting on it is equal to the weight of the fluid that the object displaces

Density: is a measure of how tightly the mass of an object is packed.

- If the density of an object is less than the density of a fluid, it will float in the fluid
- If the density of an object is greater than the density of the fluid, it will sink in the fluid.