Unit 4 Lessons 1 – 8 Study Guide

Unit 4 Lesson 1-8 Vocabulary:

Lesson:	Term	Definition		
1	Force	a push or pull		
1	Friction	a force that resists motion between two objects that are in		
		contact		
1	Gravity	a universal force that exists between all objects with mass		
2	Universal Law of	the concept that gravitation occurs everywhere in the		
	Gravitation	universe		
2	Mass	the amount of matter in an object		
2	Weight	The force of gravity on an object		
3	Coordinate System	a set of reference points, lines, and/or directions by which		
		the position of any point can be described		
3	Displacement	the distance and the direction from a reference point of an		
		object that has moved		
3	Reference Point	a point from which the position of other objects can be		
		described		
3	Rotational Motion	when objects spin in place		
3	Translational	when an object moves from point A to point B		
	Motion			
3	Vibrational Motion	When an object moves rapidly back and forth (like particles		
		in a substance)		
5	Speed			
5	Velocity			
8	Acceleration			
8	Deceleration			

Lesson 1: Force

What is a Force?

- Force: a _____ or a _____
- It can cause an object to <u>move</u>, <u>stop</u> moving, ______ speed or direction
- Examples: friction, gravity, tension

Magnitude and Direction:

- Forces have magnitude (_____) and _____
- Measured in <u>Newtons</u>: 1 lb = 4.45 N
- Direction can be _____, down, forward, backward, <u>right</u>, left, _____, south, east or west (or even southeast!)

Multiple Forces Act on Objects:

- Weight is the _____ of gravity on an object
- **Gravity** is a ______ force between objects with mass
- <u>Friction</u> is a force that _____ motion between two objects in contact with each other

• Example: Pushing a wheelbarrow

- A. "Normal" Force (ground pushing up on wheelbarrow)
- B. Pushing force (you)
- C. Weight force (force of gravity on wheelbarrow)
- D. Friction force (ground resisting motion)

Net Force = "Unbalanced":

- When one force is larger than another, we say the forces are " " or that there is a "**net force**"
- When there is a net force, the forces on an object are unbalanced.
 - Unbalanced forces cause in the direction of the force
 - Example: Elevator which way will the elevator move? ____ Up ____ Down
- When all the forces _____, we say the net force is **zero**, and the object will _____ change its motion

Lesson 2: Gravitational Force

Gravitational Pull

- <u>Gravity</u> is a universal ______ of attraction _____ all objects with mass.
- Mass: the amount of _____(atoms) in an object
- Newton's 2nd Law
 - The object with _____ mass will _____ MORE (given the same force of gravity)
 - **Example**: Popcorn kernel and Earth pull on each other (gravity).
 - Which one moves? **Popcorn** (falls)
 - Why? Popcorn has ______ than Earth
 - Example 2: Car vs. Train
 - In a collision between a car and a train, which one moves more? The car
 - Why? Because it has ______

AUSTRALIA

600 N

Law of Universal Gravitation

- 1. _____ objects have gravity
- Force of gravity changes with ______ between objects
- Gravitational force decreases between objects as they move farther away
- 3. Force of gravity changes with ______ of objects
- Gravitation force increases as mass increases.

Mass vs. Weight

Mass	Weight	
<u>Mass</u> is the amount of in an object	• <u>Weight</u> is the of gravity on an object with mass.	
Measured in kilograms (kg)	 Measured in <u>Newtons</u> (N) 	
• Stays the, no matter where you go (Earth/Moon/Outer Space)	 with location, because weight <u>depends</u> on gravity 	
Example: On moon, you have the mass as on Earth	 Example: On moon, your weight is than on Earth (because moon has less mass than Earth) 	

Gravity and the Universe

- Discovered by Sir Isaac Newton
- Keeps moons in orbit around planets and planets in orbit around stars
- Same force that causes apples to fall to the ground on Earth

Lesson 3: Motion

Motion Compared to What?

- All motion is relative
- Scientists describe the motion of an object in relation to, that is to say, _____ to, some other object.

Different Kinds of Motion

- **Translational** Motion: when an object changes from point A to point B Examples:
 - Bike going downhill
 - Earth moving in a path around the sun (yearly orbit)
- <u>Rotational Motion:</u> in place Example:
 - Bike wheels turning as bike moves
 - Earth spinning on it axis (night/day)
- <u>Vibrational</u> Motion: the rapid ______ movement of the kind found in particles that make up a substance.

Example:

- The rapid "bumping" **up-and-down motion** of the seat as the bike travels over rough ground.
- Earth experiencing an earthquake where the ground **<u>shakes</u>** up and down.

Describing Position

- **Coordinate System:** a set of reference points, lines, and/or directions by which the ______ of any point can be described (number line, or x/y system)
- **Reference Point:** a point from which the position of other objects can be described Examples:
 - o _____on a number line
 - on x/y graph

Displacement vs. Distance

- **Distance:** how far an object moves **Example:** I walked **2**______ to my friend's house
- **Displacement:** the distance and direction from a

of an object

Example: I walked 2 blocks ______ to my friend's house

4 -3 -2 -1 0 1 2 3 4 5

Lesson 5: Calculating Speed

Speed

- **Speed** is the _____ of motion, measured as distance divided by the time required to travel that distance.
- Speed = <u>distance/time</u>
 - HOW FAR you go / the time it takes to get there
 - **Examples**: miles per hour (mph), kilometers per hour (kph), or meters per second (m/s)

• Calculating Average Speed - EXAMPLE

- Sarah is running at a track meet.
- She ran 400 meters in 80 seconds.
- What is Sarah's AVERAGE speed?
 - s = d/t
 - s = 400m / 80 s
 - <u>s = m/s</u>

Velocity

- Velocity: is speed in a specific ______
 - Remember DIRECTION = positive/negative or North, South, East, West
- Example:
 - A jet airplane flying <u>720 km/hr</u>
 - A skydiver freefalling <u>30 meters per second</u>

Lesson 6: Measuring Speed and Velocity

Interpreting Motion Graphs

- Speed Graph = Position vs. Time
 - Time goes on the __-axis
 - Position goes on the __-Axis
 - Slope tells the speed:
 - steep = ____
 - shallow = <u>slow</u>
 - flat = _____

Lesson 8: Acceleration

Acceleration

- Acceleration: How <u>quickly</u> over time
- Acceleration occurs when objects do ANY of the following:
 - Change speed (slow down or speed up)
 - $\circ \quad \text{Change direction} \quad$
- Examples:
 - $\circ~$ A ball rolling a ramp is accelerating because BOTH speed and direction are changing

Acceleration & Gravity

- REVIEW: ______ is a force
- Newton's 2nd Law: forces _____ acceleration
- On Earth, gravity causes objects to accelerate about 10 meters per second every second they are in freefall....this is the reason object go ______ the they fall.

Time (s)	Velocity	Increase in velocity from previous second	Acceleration
0	0	_	-
1	9.8 m/s	9.8 m/s	9.8 m/s/s
2	19.6 m/s	9.8 m/s	9.8 m/s/s
3	29.4 m/s	9.8 m/s	9.8 m/s/s
4	?	?	?

Deceleration

- <u>Deceleration</u> is a way to say that an object is _____ down.
- Deceleration is a **decrease in velocity** over time.
- There must be a ______ applied to cause the change in speed (2nd Law)