Unit 4 Lessons 1 - 8 Study Guide

Unit 4 Lesson 1-8 Vocabulary:

Lesson:	Term	Definition
$\mathbf{1}$	Force	a push or pull
$\mathbf{1}$	Friction	a force that resists motion between two objects that are in contact
$\mathbf{1}$	Gravity	a universal force that exists between all objects with mass
$\mathbf{2}$	Universal Law of Gravitation	the concept that gravitation occurs everywhere in the universe
$\mathbf{2}$	Mass	the amount of matter in an object
$\mathbf{2}$	Weight	The force of gravity on an object
$\mathbf{3}$	Coordinate System	a set of reference points, lines, and/or directions by which the position of any point can be described
$\mathbf{3}$	Displacement	the distance and the direction from a reference point of an object that has moved
$\mathbf{3}$	Reference Point	a point from which the position of other objects can be described
$\mathbf{3}$	Rotational Motion	when objects spin in place
$\mathbf{3}$	Vibrational Motion	
Motional	when an object moves from point A to point B When an object moves rapidly back and forth (like particles in a substance)	
$\mathbf{5}$	Speed	
$\mathbf{5}$	Velocity	
$\mathbf{8}$	Acceleration	
\mathbf{D}	Deceleration	

Lesson 1: Force

What is a Force?

- Force: a \qquad or a \qquad
- It can cause an object to move, stop moving, \qquad speed or direction
- Examples: friction, gravity, tension

Magnitude and Direction:

- Forces have magnitude (\qquad) and \qquad
- Measured in Newtons: $1 \mathrm{lb}=4.45 \mathrm{~N}$
- Direction can be \qquad down, forward, backward, right, left, south, east or west (or even southeast!)

Multiple Forces Act on Objects:

- Weight is the \qquad of gravity on an object
- Gravity is a \qquad force between objects with mass
- Friction is a force that \qquad motion between two objects in contact with each other
- Example: Pushing a wheelbarrow
A. "Normal" Force (ground pushing up on wheelbarrow)
B. Pushing force (you)
C. Weight force (force of gravity on wheelbarrow)
D. Friction force (ground resisting motion)

Net Force = "Unbalanced":

- When one force is larger than another, we say the forces are " \qquad " or that there is a "net force"
- When there is a net force, the forces on an object are unbalanced.
- Unbalanced forces cause \qquad in the direction of the
\qquad force
- Example: Elevator - which way will the elevator move?
\qquad Up \qquad Down
- When all the forces \qquad , we say the net force is zero, and the object will \qquad change its motion

Lesson 2: Gravitational Force

Gravitational Pull

- Gravity is a universal \qquad of attraction
\qquad all objects with mass.
- Mass: the amount of \qquad (atoms) in an object
- Newton's $2^{\text {nd }}$ Law -
- The object with \qquad mass will \qquad MORE (given the same force of gravity)
- Example: Popcorn kernel and Earth pull on each other (gravity).
- Which one moves? Popcorn (falls)

- Why? Popcorn has \qquad than Earth
- Example 2: Car vs. Train
- In a collision between a car and a train, which one moves more? The car
- Why? Because it has \qquad

Law of Universal Gravitation

1. \qquad objects have gravity
2. Force of gravity changes with \qquad between objects

- Gravitational force decreases between objects as they move farther away

3. Force of gravity changes with \qquad of objects

- Gravitation force increases as mass increases.

Mass vs. Weight

Mass	Weight
- Mass is the amount of \qquad in an object - Measured in kilograms (kg) - Stays the \qquad , no matter where you go (Earth/Moon/Outer Space) - Example: On moon, you have the \qquad mass as on Earth	- Weight is the \qquad of gravity on an object with mass. - Measured in Newtons (N) - \qquad with location, because weight depends on gravity - Example: On moon, your weight is \qquad than on Earth (because moon has less mass than Earth)

Gravity and the Universe

- Discovered by Sir Isaac Newton
- Keeps moons in orbit around planets and planets in orbit around stars
- Same force that causes apples to fall to the ground on Earth

Lesson 3: Motion

Motion Compared to What?

- All motion is relative
- Scientists describe the motion of an object in relation to, that is to say, \qquad to, some other object.

Different Kinds of Motion

- Translational Motion: when an object changes \qquad from point A to point B

Examples:

- Bike going downhill
- Earth moving in a path around the sun (yearly orbit)
- Rotational Motion: \qquad in place
Example:
- Bike wheels turning as bike moves
- Earth spinning on it axis (night/day)

- Vibrational Motion: the rapid \qquad movement of the kind found in particles that make up a substance.

Example:

- The rapid "bumping" up-and-down motion of the seat as the bike travels over rough ground.
- Earth experiencing an earthquake where the ground shakes up and down.

Describing Position

- Coordinate System: a set of reference points, lines, and/or directions by which the
\qquad of any point can be described (number line, or x / y system)
- Reference Point: a point from which the position of other objects can be described
 Examples:
- \qquad on a number line
- \qquad on x / y graph

Displacement vs. Distance

- Distance: how far an object moves Example: I walked 2 \qquad to my friend's house
- Displacement: the distance and direction from a
\qquad of an object

Example: I walked 2 blocks \qquad to my friend's house

Lesson 5: Calculating Speed

Speed

- Speed is the \qquad of motion, measured as distance divided by the time required to travel that distance.
- Speed = distance/time
- HOW FAR you go / the time it takes to get there
- Examples: miles per hour (mph), kilometers per hour (kph), or meters per second (m / s)
- Calculating Average Speed - EXAMPLE
- Sarah is running at a track meet.
- She ran $\mathbf{4 0 0}$ meters in $\mathbf{8 0}$ seconds.
- What is Sarah's AVERAGE speed?
$s=d / t$
$\mathrm{s}=400 \mathrm{~m} / 80 \mathrm{~s}$
$\mathrm{s}=\mathrm{m} / \mathrm{s}$

Velocity

- Velocity: is speed in a specific \qquad .
- Remember DIRECTION = positive/negative or North, South, East, West
- Example:
- A jet airplane flying $\mathbf{7 2 0} \mathbf{~ k m} / \mathrm{hr}$
- A skydiver freefalling $\mathbf{3 0}$ meters per second \qquad .

Lesson 6: Measuring Speed and Velocity

Interpreting Motion Graphs

- Speed Graph = Position vs. Time
- Time goes on the __-axis
- Position goes on the __-Axis
- Slope tells the speed:
- steep = \qquad
- shallow = slow
- flat = \qquad

Lesson 8: Acceleration

Acceleration

- Acceleration: How quickly \qquad over time
- Acceleration occurs when objects do ANY of the following:
- Change speed (slow down or speed up)
- Change direction
- Examples:
- A ball rolling a ramp is accelerating because BOTH speed and direction are changing

Acceleration \& Gravity

- REVIEW: \qquad is a force
- Newton's 2nd Law: forces \qquad acceleration
- On Earth, gravity causes objects to accelerate about 10 meters per second every second they are in freefall....this is the reason object go \qquad the
\qquad they fall.

Time (s)	Velocity	Increase in velocity from previous second	Acceleration
0	0	-	-
1	$9.8 \mathrm{~m} / \mathrm{s}$	$9.8 \mathrm{~m} / \mathrm{s}$	$9.8 \mathrm{~m} / \mathrm{s} / \mathrm{s}$
2	$19.6 \mathrm{~m} / \mathrm{s}$	$9.8 \mathrm{~m} / \mathrm{s}$	$9.8 \mathrm{~m} / \mathrm{s} / \mathrm{s}$
3	$29.4 \mathrm{~m} / \mathrm{s}$	$9.8 \mathrm{~m} / \mathrm{s}$	$9.8 \mathrm{~m} / \mathrm{s} / \mathrm{s}$
4	$?$	$?$	$?$

Deceleration

- Deceleration is a way to say that an object is \qquad down.
- Deceleration is a decrease in velocity over time.
- There must be a \qquad applied to cause the change in speed ($2{ }^{\text {nd }}$ Law)

