Unit 3 Chemistry – Lessons 3 – 6 Study Guide

Unit 3 Lessons 3-6 VOCABULARY

Lesson	Term	Definition		
3	Covalent bond	a bond in which electrons are shared between the bonded atoms		
3	Covalent compound	any compound resulting from covalent bonding		
3	Ionic bond	the force of attraction between a charged atom (or group of connected atoms) and another with the opposite charge		
3	Ionic compound	any compound resulting from ionic bonding		
3	Polymer	a molecule consisting of repeating chemical units		
5	Catalyst	Catalyst a substance present during a chemical reaction that speeds up the reaction but is not used up or changed during the reaction		
5	Equilibrium that state of chemical system in which the rates of the forward reactions are equal			
5	Reaction Rate	how quickly a specific chemical reaction occurs under specific conditions over time		

Lesson 3 Chemical Formulas

REVIEW: Ionic & Covalent Bonds

- <u>Ionic bonds</u> are formed from the electrical _____ of two oppositely charged ions.
 - o They usually contain a metal and nonmetal.
- A covalent bond forms when atoms pairs of electrons.
 - They usually contain nonmetals.

Writing Chemical Formulas

- Example: C₃H₈O = rubbing alcohol
 - \circ C₃ = 3 atoms of carbon
 - H₈ = ___atoms of hydrogen
 - O = 1 atom of oxygen

Transfer of electrons Ionic compound

Ionic Compound Formulas

- While <u>ionic compounds</u> deal with ions –charged atoms– the compound formulas are balanced or neutral with a charge of ______.
- Example: Salt –Sodium Chloride (NaCl)
 - 1. Sodium (Na) ion has a positive charge of one (Na1+)
 - 2. Chloride (Cl), has a negative charge of one (Cl1-).
 - 3. Positive and negative charges have the sum of zero if there is one sodium atom for every chlorine, so the formula NaCl is correct.

_		_		. –		
Coval	lent	Com	poun	d Fo	ormu	las

- For a <u>covalent compound</u>, the chemical formula shows how many ______ of each kind join together to form the molecules of the compound. Therefore, it is called a molecular formula.
 - are used to signal how many atoms of each element are in the molecular formula.

Number of atoms

2

3

5

7

8

Prefix mono-

di-

tri-

tetra-

pentahexa-

hepta-

octa-

nona-

o Example: Sulfur trioxide (SO₃)

Writing Chemical Equations

- A chemical equation _____ a chemical reaction using symbols and numbers.
- Chemical formulas (example: H₂O) are used to write chemical
- Just like a math equation, a chemical equation shows a relationship between substances on the left (reactants) and right (products) sides
 - O A "_____" sign means two substances are added together.
 - The "→ " is similar to an equal sign.
 - o Example: the reaction of carbon and oxygen to form carbon dioxide.

$C + O_2$	→ CO ₂
<u>reactants</u>	

Polymers

- A <u>polymer</u> is a covalently bonded molecule consisting of ______ chemical units.
 - These units can form long chains.
 - o Each of the repeating units is called a monomer.
 - o The chemical formula of the monomer is simply repeated many times in the polymer.
 - Example: becoming starch

Lesson 5 Rates of Chemical Reactions

Explore Rates of Chemical Reactions

When you put magnesium into a hydrochloric acid solution, the following reaction occurs:

$$Mg(s) + 2HCl(I) \rightarrow MgCl_2(aq) + H_2(g)$$

- The symbol (___) after the Mg tells us that the magnesium is a solid;
- The symbol (I) after hydrochloric acid means it is a liquid;
- The symbol (), for "aqueous" indicates that the substance is in a water solution;
- \circ And the symbol (g) means that the H₂ is in the form of a gas.

How FAST does the reaction occur?

- All chemical reactions are processes that take place during a period of
 - o A chemical reaction is not instantaneous, even if it seems that way.
 - Even an explosion takes place over time.

Reaction Rate

- The reaction rate is the of a reaction under specific conditions.
 - You can determine the reaction rate by figuring out how much of the _______ is used up over a period of time
 - o or how much time it takes to form a certain amount of the ______.

Interpreting Graphs

- You can determine the rate of the reaction by judging how steep the curve is at points
 - Steeper the curve, faster the reaction
 - Looking at the graph, the reaction starts fast, slows down, and stops.

Rate of Reaction

- Factors that determine reaction rate are:
 - 1. <u>Temperature</u>—the higher the temperature, the ______ the reaction rate.
 - 2. Concentration—the more concentrated the reactants, the the reaction rate.
 - 3. <u>Surface area</u>—when the reaction involves solids, an increased surface area will result in an <u>increased</u> reaction rate.
 - 4. <u>Catalyst</u>—the presence of a catalyst _____ up the reaction rate.

Equilibrium

• Equilibrium is the state of chemical system in which the rates of the forward and reverse reactions are

Lesson 6 Chemical Equations

Writing an Equation

• Aluminum is not found "pure" in nature. A chemical reaction is used to <u>produce</u> the aluminum for your aluminum foil. Here's the reaction and the chemical ______:

aluminum chloride + potassium → aluminum + potassium chloride

$$AICI_3 + K \rightarrow AI + KCI$$

→ <u>Products</u>

The equation tells you the basic facts of the reaction. But as written, this reaction violates a basic law
of nature.

The Law of Conservation of Mass

• The Law of Conservation of Mass states: the mass of substances does **not** change during chemical reactions.

Balancing Equations

Both sides of a chemical equation need to have the _____ number of <u>atoms of each element</u> for the equation to be _____.

- How to balance chemical equations:
 - 1. Write the chemical equation with chemical symbols.
 - 2. _____the <u>number of atoms</u> of <u>each element</u> on <u>both sides</u> of the equation.
 - 3. Balance atoms using <u>coefficients</u>. (A coefficient is a number placed ______ the element or compound.)
 - 4. Check to make sure the equation is balanced.
- Example: balance the aluminum reaction

$$AICI_3 + K \rightarrow AI + KCI$$

$$AICI_3 + 3K \rightarrow AI + 3KCI$$