Unit 3 Lessons 8 - 13 Study Guide

Unit 3 Lesson 8-13 Vocabulary:

Lesson:	Term	Definition
$\mathbf{1 0}$	Chromatography	Separation of substances in a mixture by differences in their attraction to a substance over which they are passed
$\mathbf{1 0}$	Distillation	Physically separating a solution of a solid and a liquid by boiling off the liquid
$\mathbf{1 1}$	Saturated	Dissolving the greatest possible amount of a substance in a solution
$\mathbf{1 1}$	Solubility	How much solute can be dissolved in a solvent at a given temperature.
$\mathbf{1 1}$	Solution	A mixture in which the substances are completely and evenly mixed, down to their individual molecules (sugar- water is a solution)
$\mathbf{1 1}$	Substance	Matter that has particular properties.

Lesson 8: Lab Dissolving Metals

Factors that affect the rate of a chemical reaction

1. T
2. Concentration
3. Surface Area

Lesson 9: Mixtures

Element, Compound or Mixture?

Element: is a \qquad that cannot be broken down or \qquad into simpler substances

Compound: is a substance made up of \qquad or more \qquad that can only be separated by chemical means

- When a compound is formed, it has a completely \qquad set of properties

Mixture: a \qquad of two or more substances that do not change \qquad when mixed; made of elements; the elements are parts of compounds; can be solid, liquid or gas

- Example: Salt (compound) + Water (compound) = Salt water

Properties of Mixtures:

A mixture has three (3) main properties that make it different from a compound

1. The components of a mixture keep their unique properties and identities
2. The components are not in fixed ratios
3. The components of a mixture can be separated physically

Types of Mixtures:

- Heterogeneous Mixture: a mixture that has components spread \qquad throughout the mixture
- Not uniform in appearance, each part of a the mixture contains a combination of different ingredients in different ratios
- Examples: tossed salad, trail mix, fruit salad
- Homogeneous Mixture: a mixture that looks like a \qquad substance, the components are spread evenly throughout
- Substance is mixed uniformly throughout, each part of the substance contains the same ratio of materials with the same properties
- Examples: sugar water, juice, air, carbonated drinks
- Solution: a mixture with one or more of the substances \qquad in another
- A type of homogeneous mixture
- Example: sugar water

Lesson 10: Separating Mixtures

Remember! A mixture CAN be separated into its component parts without a chemical reaction occurring!

Ways a Mixture CAN be Separated:

1. Separating with a \qquad

- Example: separate iron fillings from aluminum by using a magnet

2. Separating with a filter

- Example: Use a filter to separate sand from water

3. Separating by \qquad

- Example: if you have a cup of salt water, let the water evaporate and only the salt will be left

4. Separating by distillation

- Distillation: physically separating a solution of a solid and a liquid by boiling off the liquid
- Example: heat saltwater to distil it into pure water; crude oil (gasoline, kerosene, and diesel)

5. Separating by \qquad

- Example: Sand and Sawdust - Put sand and sawdust in water to separate them (sawdust will float because it has less density than water)

6. Separating by chromatography:

- Chromatography: see vocabulary definition
- Example: Pigments from plants

Lesson 11: Solutions

Pure Substance: made of one kind of atom or one kid of molecule

- Example: water, table sugar, carbon dioxide, diamond

Substances in Solution:

- Most homogeneous mixtures are \qquad
- Can be a solid, liquid, or gas

Solutions: Solvents and Solutes (Example: Saltwater)

- Solution: has at least two components:

○ \qquad : what is doing the dissolving

- Main part of the solution; the one that provides a substance's main physical property
- Example: water

○ \qquad : what is being dissolved; the minor constituent of a solution

- Example: salt

How Much Solute Can Dissolve in a Solvent?

- All solutions have limits on how much solute will be dissolved in the solvent
- Saturated: dissolving the \qquad possible amount of a substances in a solution
- Example: If you tried to add more sugar to lemonade, it would sit, un-dissolved at the bottom of the pitcher
- Solubility: how much solute can be dissolved in a solvent
- Example: the \qquad of the sugar increased when we raised the temperature

Lesson 12: Substances and Lesson 13: Lab Separating Mixtures

Refer to Lessons 9, 10, and 11 notes for both lessons

