UNIT 1: Introductions to Physical Science STUDY GUIDE

Unit 1 VOCABULARY:

Unit 1 Lesson:	WORD	DEFINITION
2	theory	
2	Universal law	
3	Ampere	
3	Candela	
3	kelvin	
3	kilogram	
3	model	
3	second	
3	SI	
3	spectroscope	
3	theory	

Unit 1 Lesson 1: Intro to Physical Science

- Physical science is the study of energy and matter
- All of the material and content discussed in class will come directly from the Online School (OLS).

Unit 1 Lesson 2: Physical Systems

- Science is a way of learning and knowing about the word.
- ______ about the world are based on <u>observations</u> and experiments that other scientists can verify.
- <u>A System</u>: a group of things that ______ with one another; work together to perform a single task.
 - Any group of interacting elements can be a system.
- Examples of systems:
 - As small as two atoms colliding
 - As large as the entire universe
 - As complex as earth and all that it contains.
- Scientists use a **model** to ______ and <u>understand</u> a system.

- A scientific model is often a ______ that is simpler than the real system
- Two Types of Systems:
 - 1. Closed System: nothing goes in or out that affects the system
 - Example: Bathtub of water considered closed system if no water goes in or out (plugged)
 - **2. Open System:** something coming in from the outside or something leaves the system affects it.
 - Example: If the drain didn't close in the bathtub; water would run out; open system
- How Science Works:
 - ____knowledge causes scientists to <u>rethink their theories and</u> ______
 - Theories and models are modified if a change is necessary in light of new knowledge.
- Universal Law: principle that is in effect _______ at all times.
 - Example: Gravity
- Theory: an explanation to account for ______ of many types; it is then used to make predictions that can be tested with ______ observations.

Unit 1 Lesson 3: Measurement and the International System

- Mass: the amount of ______ something has in it.
 - o Example: Golf ball has more mass than a ping-pong ball
- Measurement: is the <u>comparison</u> of a quantity to a standard unit
 - Without the comparison to a standard unit, it is not considered a measurement.
- **SI**: international system of units; specifies the metric system of physical quantities

• Basic Units in SI:

quantity	unit (abbreviation)
distance	meter (m)
mass	kilogram (kg)
time	second (s)
electrical current	ampere (A)
temperature	kelvin (K)
light intensity	candela (cd)
amount of substance	mole (mol)

- Candela: SI unit for _____ (the intensity of the light that it gives out)
- Kelvin: the SI unit of temperature
- Ampere: the SI unit of electrical ______ flow
- Mole: an SI unit of the amount of a substance
- Standard systems of measurement are important because scientist want to

share measurement data that they can understand

Unit 1 Lesson 4 LAB: Measured Steps

- Scientists found that in order to describe objects consistently, they needed to use the same units.
- Meter stick is the easiest device to use for measuring large objects
- Ruler stick is the most useful device for measuring small objects
- The most reliable data is gathered by using standardized units.

Unit 1 Lesson 5 LAB: Density

- All matter has <u>mass</u> and takes up space.
- When we want to know how much space a substance actually takes up, we need to measure its ______.
- What is DENSITY?
- A measure of the ______ of a material within a given space.
- Density = mass / volume